Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action.
نویسندگان
چکیده
The spore-forming bacterium Bacillus thuringiensis produces intracellular inclusions comprised of protoxins active on several orders of insects. These highly effective and specific toxins have great potential in agriculture and for the control of disease-related insect vectors. Inclusions ingested by larvae are solubilized and converted to active toxins in the midgut. There are two major classes, the cytolytic toxins and the delta-endotoxins. The former are produced by B. thuringiensis subspecies active on Diptera. The latter, which will be the focus of this review, are more prevalent and active on at least three orders of insects. They have a three-domain structure with extensive functional interactions among the domains. The initial reversible binding to receptors on larval midgut cells is largely dependent upon domains II and III. Subsequent steps involve toxin insertion into the membrane and aggregation, leading to the formation of gated, cation-selective channels. The channels are comprised of certain amphipathic helices in domain I, but the three processes of insertion, aggregation and the formation of functional channels are probably dependent upon all three domains. Lethality is believed to be due to destruction of the transmembrane potential, with the subsequent osmotic lysis of cells lining the midgut. In this review, the mode of action of these delta-endotoxins will be discussed with emphasis on unique features.
منابع مشابه
Evolution of Bacillus thuringiensis Cry toxins insecticidal activity
Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better ch...
متن کاملBacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection.
Bacillus thuringiensis bacteria are insect pathogens that produce different Cry and Cyt toxins to kill their hosts. Here we review the group of three-domain Cry (3d-Cry) toxins. Expression of these 3d-Cry toxins in transgenic crops has contributed to efficient control of insect pests and a reduction in the use of chemical insecticides. The mode of action of 3d-Cry toxins involves sequential int...
متن کاملReview Protease Interactions With Bacillus thuringiensis Insecticidal Toxins
The microbe Bacillus thuringiensis (Bt) produces crystals that contain insecticidal crystal proteins (ICPs) used to control many major pests. ICPs are degraded by proteases from a variety of sources, including those endogenous to the bacterium, those purified from animals and plants, or those found in insects. Proteases in the bacterium function in protein metabolism during sporulation; in some...
متن کاملSpecificity determinants for Cry insecticidal proteins: Insights from their mode of action.
Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are used as active components of biopesticides and as plant incorporated protectants in transgenic crops. One of the most relevant attributes of these Bt protein-based insecticidal technologies is their high specificity, which assures lack of detrimental effects on non-target insects, vertebrates and the environment. The ident...
متن کاملStrategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis.
Bacillus thuringiensis Cry toxins have been widely used in the control of insect pests either as spray products or expressed in transgenic crops. These proteins are pore-forming toxins with a complex mechanism of action that involves the sequential interaction with several toxin-receptors. Cry toxins are specific against susceptible larvae and although they are often highly effective, some inse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology letters
دوره 195 1 شماره
صفحات -
تاریخ انتشار 2001